sábado, 13 de febrero de 2010

THE FREE ELECTRON

Maintaining electrical balance

Each basic element has a certain number of electrons and protons, which distinguishes each element from all other basic elements. In most elements, the number of electrons is equal to the number of protons. This maintains an electrical balance in the structure of atoms since protons and electrons have equal, but opposite electrostatic fields.


Pictured here is an atom of copper, which is much more complex than either an atom of hydrogen or helium.

The copper atom has 29 protons in its nucleus with 29 electrons orbiting the nucleus. Notice that in the copper atom, the electrons are arranged in several layers called shells. This is to graphically represent that the electrons are at different orbits or energy levels within the atom. The energy of an electron is restricted to a few particular energy levels. The energy is said to be quantized, meaning that it cannot vary continuously over a range, but instead is limited to certain values. These energy levels or shells follow a very predictable pattern. The closest shell to the nucleus can have up to 2 electrons. The second shell from the nucleus can have up to 8 electrons. The third shell can have up to 18 electrons. The fourth shell can have up to 32 electrons, and so on. Atoms can have this many electrons, but they do not have to have this many electrons in each shell. The greater distance between the electrons in the outer shells and the protons in the nucleus mean the outer shell electrons experience less of a force of attraction to the nucleus than do the electron in the inner shells.
In the next sub-unit you will learn about the the outer shell of an atom called the valence shell.

THE VALENCE SHELL

What is the valence shell?

Notice that in the copper atom pictured below that the outside shell has only one electron. This represents that the copper atom has one electron that is near the outer portion of the atom. The outer shell of any atom is called the valence shell. When the valence electron in any atom gains sufficient energy from some outside force, it can break away from the parent atom and become what is called a free electron.


Atoms with few electrons in their valence shell tend to have more free electrons since these valence electrons are more loosely bound to the nucleus. In some materials like copper, the electrons are so loosely held by the atom and so close to the neighboring atoms that it is difficult to determine which electron belongs to which atom. Under these conditions, the valence or free electrons tend to drift randomly from one atom to its neighboring atoms. Under normal conditions the movement of the electrons is truly random, meaning they are moving in all directions by the same amount. However, if some outside force acts upon the material, this flow of electrons can be directed through materials and this flow is called electrical current. Materials that have free electrons and allow electrical current to flow easily are called conductors. Many materials do not have any free electrons. Because of this fact, they do not tend to share their electrons very easily and do not make good conductors of electrical currents. These materials are called insulators. There will be more information on this later.

Hernandez Caballero Indiana M. CI: 15.242.745
Asignatura: EES


No hay comentarios:

Publicar un comentario